Elektromobilität
Elektromobilität: Herausforderung und Chance für Beschichtungsprozesse
E-Mobilität ist die neue Mobilität: Elektroautos, E-Bikes und E-Scooter gewinnen in der Gesellschaft zunehmend an Bedeutung. Für die Hersteller ergeben sich daraus neue Herausforderungen in der Lieferkette: von der Hybridtechnologie über Leichtbaulösungen, fortschrittliche Sicherheitssysteme und autonomes Fahren bis hin zu Einflüssen auf die Akustik und die Lebensdauer der Fahrzeuge. Beim Stichwort E-Mobilität denken wir meistens an Batterie- und Brennstoffzellentechnologie für alternative Antriebssysteme. Doch das ist nur ein Teil des Themas. Auch die Wärme- und Oberflächenveredelung spielt eine wichtige Rolle, wobei innovative Technologien viele Schlüsselbereiche optimieren können. Und in einem sich schnell verändernden Markt ist Flexibilität der Schlüssel, da viele dieser neuen Anforderungen durch die Auswahl der richtigen Behandlungssysteme erfüllt werden können.
Vorteile für E-Mobilität
Beschichtungskonzepte für die Akustik in der E-Mobilität
Beschichtungskonzepte spielen in der Fahrzeugakustik für Elektromobile eine große Rolle. Die Fahrzeugakustik beschäftigt sich mit der Modellierung von Geräuschen – sowohl denen im Innenraum als auch denen, die von außen in der Fahrzeugumgebung wahrgenommen werden. Während es aus Insassenperspektive um die Lautstärkeverringerung geht, spielen aus externer Sicht bei Geräuschreduzierung vornehmlich Sicherheitsaspekte eine Rolle. Bei Elektrofahrzeugen entfällt die markante Geräuschkulisse des Verbrennungsmotors und die Akustik des elektrischen Antriebsstranges sowie Betriebsgeräusche rücken in den Vordergrund.
Folglich gilt es, in der Fahrzeugentwicklung die emotionalen Bedürfnisse der Kunden zu erfüllen und gleichzeitig Bewegungs- und Vibrationsgeräusche gezielt zu reduzieren. Dafür werden trockenschmierende Gleitlackbeschichtungen in Form von Polymersystemen auf PTFE-, PFA- oder FEP-Fluorpolymerbasis sowie MoS2- oder Graphitbasis eingesetzt. Bekannte Oberflächentechniken sind unter anderem Xylan®, Molykote®, Gleitmo®, Antifricor® und GLISS-COAT®. Zusätzlich können mittels Flockbeschichtung mit kathodischer Tauchlackierung (KTL) als Grundschicht Kontaktgeräusche bei Vibration deutlich reduziert werden. Weitere Vorteile der reinen Flockbeschichtung sind der Ausgleich von Fertigungstoleranzen sowie die Geräuschdämmung auf Metall- und Kunststoffoberflächen.
Elektrifizierung – Leitfähigkeit & Beschichtungskonzepte für Batteriegehäuse und Stecker
Eine optimierte Oberflächentechnik wird in der Elektromobilität in zahlreichen Bereichen eingesetzt. Elektrofahrzeuge werden nicht nur mit Strom angetrieben, sondern sind selbstverständlich auch mit einer Vielzahl elektrischer Bordsysteme ausgestattet. Dadurch verbessern sich zwar einerseits Leistungsfähigkeit und Komfort, gleichzeitig steigt aber auch der Stromverbrauch deutlich. Das geht so weit, dass die üblichen 12 Volt für die Bordelektronik nicht mehr ausreichen und neuerdings vermehrt die sogenannte 48-Volt-Technik zum Einsatz kommt.
Grundvoraussetzung für eine gute elektrische Leitfähigkeit sind qualitativ hochwertige Kontakte bzw. Steckverbinder und Stromschienen, idealerweise beschichtet mit Zinn, Silber oder Gold. Bestenfalls werden Kombinationsschichten mit einer Diffusionssperre aus Kupfer und Nickel gewählt, da diese neben der Signal- und Stromübertragung auch einen guten Korrosionsschutz gewährleisten. Durch die höhere Spannung von 48 Volt steigt die Einsatztemperatur der Verbindungselemente auf über 160°C, und für einen sicheren Betrieb müssen Silberbeschichtungen in höheren Schichtdicken auf den Bauteilen abgeschieden werden.
Eine fachgerechte Oberflächenbeschichtung ist auch entscheidend für den sicheren Betrieb großer Fahrzeugbatterien, denn nur mit hochwertiger Oberflächentechnik entstehen effiziente Schutzeinrichtungen, wie beispielsweise korrosionsgeschützte Batteriegehäuse. Die Vernickelung mit Sulfamat-Nickel bietet neben hohen Schichtdicken und einem guten Haftgrund für Kombinationsbeschichtungen auch den Vorteil der Löt- und Schweißbarkeit. Zudem laufen aktuell Untersuchungen, um die Graphitschicht auf Anoden von Lithium-Ionen-Batterien durch eine Zinnschicht zu ersetzen und somit eine deutliche Kostensenkung zu erzielen.
Ein häufig vernachlässigter Aspekt im Zusammenhang mit der Elektrifizierung ist die Übertragung von Hochfrequenzsignalen im Fahrzeug. Damit sie störungsfrei ablaufen kann, braucht es eine gute Kontaktierung, aber auch eine effektive Reduktion von Störquellen. Durch einen mehrschichtigen Aufbau werden statische Aufladungen auf hart anodisierten Aluminiumoberflächen bei gleichzeitiger elektrischer Isolation gezielt abgeleitet und Signalübertragungsstörungen reduziert.
Auch für zukünftige Standards wie autonomes Fahren oder sensorische Gefahrenerfassung sind versilberte beziehungsweise verzinnte Stecker aufgrund ihrer hohen Leitfähigkeit unerlässlich. Beschichtungstechnik schafft also die Grundlage für den sicheren Betrieb der Bordsysteme der Zukunft.
Leichtbau: Beschichtungsverfahren in der E-Mobilität
Die Achillesverse der E-Fahrzeuge ist ihre aktuell noch geringe Reichweite. Mit konsequentem Leichtbau kann hier gegengesteuert werden, indem eingespartes Gewicht vergrößerten Batterien zugutekommt. Dafür werden neben Aluminium und hochfestem Stahl auch die höherwertigen Werkstoffe Titan und Magnesium eingesetzt, die wiederum aus diversen Gründen eine Oberflächenbeschichtung benötigen. Zum Beispiel brauchen Magnesiumfelgen für den Korrosionsschutz sowie zur Vorbereitung der Nasslack- oder Pulverbeschichtung eine Magnesiumoxidbeschichtung. Hochfeste Stähle können mit sehr dünnen Wandstärken verbaut werden, sind dadurch aber anfällig für Korrosionsschäden und müssen mit effektiven Oberflächenveredelungen davor geschützt werden. Bei Titan lässt sich eine galvanische Korrosion mit anderen metallischen Werkstoffen, die trotz Ausbildung einer Passivschicht entstehen kann, durch eine Oxidbeschichtung verhindern.
In E-Bikes werden aus Gründen der Gewichtseinsparung größtenteils Aluminium- und Magnesiumwerkstoffe verbaut. So schafft eine Oberflächenbeschichtung mit Aluminiumoxid auf Batteriegehäusen einen Haftgrund für Kleber (als gängige Alternative zu Schweißverbindungen), und Magnesiumbeschichtungen sorgen für verbesserten Verschleißschutz, so zum Beispiel auf Zahnrädern.
Professionelle Oberflächenbeschichtung für eine längere Lebensdauer von Bauteilen
Aufgrund der zunehmenden Elektrifizierung muss die Abstimmung der Lebensdauer sämtlicher im Fahrzeug verbauten Komponenten neu justiert werden. Grundsätzlich können E-Fahrzeuge länger genutzt werden, weil sie einen geringeren Verschleiß als konventionell angetriebene Pkw haben und insgesamt weniger Komponenten verbaut sind. Die längere Nutzungsdauer wird allerdings aufgrund der höheren Anschaffungskosten auch von den Kunden erwartet.
In der Verschleißdiskussion wird man sich zukünftig auf andere Baugruppen konzentrieren und die Erhöhung der Korrosionsschutzklassen für Fahrwerkskomponenten vorantreiben. An vielen Stellen, an denen aktuell niedrige Korrosionsschutzklassen ausreichen, werden in Zukunft höherwertige Mikroschichtkorrosionsschutzsysteme (Zinklamellenbeschichtungen) oder galvanisch Nickel (Sulfamat-Nickel) und Chemisch Nickel (DURNI-COAT®) in den Fokus geraten. Damit wird die professionelle Oberflächenbeschichtung verschiedenster Komponenten noch entscheidender für den Erfolg in der Automotivebranche..
Prozesssstandorte
Kontaktieren Sie uns
Wählen Sie Ihren bevorzugten Prozessstandort